Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rambow, Owen; Wanner, Leo; Apidianaki, Marianna; Khalifa, Hend; Eugenio, Barbara; Schockaert, Steven (Ed.)We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations. Traditional evaluation methods often rely on human judgment, which is costly and unscalable, or focus solely on data accuracy, neglecting the effectiveness of visual communication. By employing VQA models, we assess data representation quality and the general communicative clarity of charts. Experiments were conducted using two leading VQA benchmark datasets, ChartQA and PlotQA, with visualizations generated by OpenAI’s GPT-3.5 Turbo and Meta’s Llama 3.1 70B-Instruct models. Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures. Moreover, while our results demonstrate that few-shot prompting significantly boosts the accuracy of chart generation, considerable progress remains to be made before LLMs can fully match the precision of human-generated graphs. This underscores the importance of our work, which expedites the research process by enabling rapid iteration without the need for human annotation, thus accelerating advancements in this field.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Increasing cycling for transportation or recreation can boost health and reduce the environmental impacts of vehicles. However, news agencies' ideologies and reporting styles often influence public perception of cycling. For example, if news agencies overly report cycling accidents, it may make people perceive cyclists as "dangerous," reducing the number of cyclists who opt to cycle. Additionally, a decline in cycling can result in less government funding for safe infrastructure. In this paper, we develop a method for detecting the perceived perception of cyclists within news headlines. We introduce a new dataset called ``Bike Frames'' to accomplish this. The dataset consists of 31,480 news headlines and 1,500 annotations. Our focus is on analyzing 11,385 headlines from the United States. We also introduce the BikeFrame Chain-of-Code framework to predict cyclist perception, identify accident-related headlines, and determine fault. This framework uses pseudocode for precise logic and integrates news agency bias analysis for improved predictions over traditional chain-of-thought reasoning in large language models. Our method substantially outperforms other methods, and most importantly, we find that incorporating news bias information substantially impacts performance, improving the average F1 from .739 to .815. Finally, we perform a comprehensive case study on US-based news headlines, finding reporting differences between news agencies and cycling-specific websites as well as differences in reporting depending on the gender of cyclists. WARNING: This paper contains descriptions of accidents and death.more » « lessFree, publicly-accessible full text available May 4, 2026
-
We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations. Traditional evaluation methods often rely on human judgment, which is costly and unscalable, or focus solely on data accuracy, neglecting the effectiveness of visual communication. By employing VQA models, we assess data representation quality and the general communicative clarity of charts. Experiments were conducted using two leading VQA benchmark datasets, ChartQA and PlotQA, with visualizations generated by OpenAI’s GPT-3.5 Turbo and Meta’s Llama 3.1 70B-Instruct models. Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures. Moreover, while our results demonstrate that few-shot prompting significantly boosts the accuracy of chart generation, considerable progress remains to be made before LLMs can fully match the precision of human-generated graphs. This underscores the importance of our work, which expedites the research process by enabling rapid iteration without the need for human annotation, thus accelerating advancements in this field.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government

Full Text Available